14 research outputs found

    Knowledge extraction from unstructured data

    Get PDF
    Data availability is becoming more essential, considering the current growth of web-based data. The data available on the web are represented as unstructured, semi-structured, or structured data. In order to make the web-based data available for several Natural Language Processing or Data Mining tasks, the data needs to be presented as machine-readable data in a structured format. Thus, techniques for addressing the problem of capturing knowledge from unstructured data sources are needed. Knowledge extraction methods are used by the research communities to address this problem; methods that are able to capture knowledge in a natural language text and map the extracted knowledge to existing knowledge presented in knowledge graphs (KGs). These knowledge extraction methods include Named-entity recognition, Named-entity Disambiguation, Relation Recognition, and Relation Linking. This thesis addresses the problem of extracting knowledge over unstructured data and discovering patterns in the extracted knowledge. We devise a rule-based approach for entity and relation recognition and linking. The defined approach effectively maps entities and relations within a text to their resources in a target KG. Additionally, it overcomes the challenges of recognizing and linking entities and relations to a specific KG by employing devised catalogs of linguistic and domain-specific rules that state the criteria to recognize entities in a sentence of a particular language, and a deductive database that encodes knowledge in community-maintained KGs. Moreover, we define a Neuro-symbolic approach for the tasks of knowledge extraction in encyclopedic and domain-specific domains; it combines symbolic and sub-symbolic components to overcome the challenges of entity recognition and linking and the limitation of the availability of training data while maintaining the accuracy of recognizing and linking entities. Additionally, we present a context-aware framework for unveiling semantically related posts in a corpus; it is a knowledge-driven framework that retrieves associated posts effectively. We cast the problem of unveiling semantically related posts in a corpus into the Vertex Coloring Problem. We evaluate the performance of our techniques on several benchmarks related to various domains for knowledge extraction tasks. Furthermore, we apply these methods in real-world scenarios from national and international projects. The outcomes show that our techniques are able to effectively extract knowledge encoded in unstructured data and discover patterns over the extracted knowledge presented as machine-readable data. More importantly, the evaluation results provide evidence to the effectiveness of combining the reasoning capacity of the symbolic frameworks with the power of pattern recognition and classification of sub-symbolic models

    FALCON: An entity and relation linking framework over DBpedia

    Get PDF
    We tackle the problem of entity and relation linking and present FALCON, a rule-based tool able to accurately map entities and relations in short texts to resources in a knowledge graph. FALCON resorts to fundamental principles of the English morphology (e.g., compounding and headword identification) and performs joint entity and relation linking against a short text. We demonstrate the benefits of the rule-based approach implemented in FALCON on short texts composed of various types of entities. The attendees will observe the behavior of FALCON on the observed limitations of Entity Linking (EL) and Relation Linking (RL) tools. The demo is available at https://labs.tib.eu/falcon/

    Resorting to Context-Aware Background Knowledge for Unveiling Semantically Related Social Media Posts

    Get PDF
    Social media networks have become a prime source for sharing news, opinions, and research accomplishments in various domains, and hundreds of millions of posts are announced daily. Given this wealth of information in social media, finding related announcements has become a relevant task, particularly in trending news (e.g., COVID-19 or lung cancer). To facilitate the search of connected posts, social networks enable users to annotate their posts, e.g., with hashtags in tweets. Albeit effective, an annotation-based search is limited because results will only include the posts that share the same annotations. This paper focuses on retrieving context-related posts based on a specific topic, and presents PINYON, a knowledge-driven framework, that retrieves associated posts effectively. PINYON implements a two-fold pipeline. First, it encodes, in a graph, a CORPUS of posts and an input post; posts are annotated with entities for existing knowledge graphs and connected based on the similarity of their entities. In a decoding phase, the encoded graph is used to discover communities of related posts. We cast this problem into the Vertex Coloring Problem, where communities of similar posts include the posts annotated with entities colored with the same colors. Built on results reported in the graph theory, PINYON implements the decoding phase guided by a heuristic-based method that determines relatedness among posts based on contextual knowledge, and efficiently groups the most similar posts in the same communities. PINYON is empirically evaluated on various datasets and compared with state-of-the-art implementations of the decoding phase. The quality of the generated communities is also analyzed based on multiple metrics. The observed outcomes indicate that PINYON accurately identifies semantically related posts in different contexts. Moreover, the reported results put in perspective the impact of known properties about the optimality of existing heuristics for vertex graph coloring and their implications on PINYON scalability

    Falcon 2.0: An Entity and Relation Linking Tool over Wikidata

    Get PDF
    The Natural Language Processing (NLP) community has significantly contributed to the solutions for entity and relation recognition from a natural language text, and possibly linking them to proper matches in Knowledge Graphs (KGs). Considering Wikidata as the background KG, there are still limited tools to link knowledge within the text to Wikidata. In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata. It receives a short natural language text in the English language and outputs a ranked list of entities and relations annotated with the proper candidates in Wikidata. The candidates are represented by their Internationalized Resource Identifier (IRI) in Wikidata. Falcon 2.0 resorts to the English language model for the recognition task (e.g., N-Gram tiling and N-Gram splitting), and then an optimization approach for the linking task. We have empirically studied the performance of Falcon 2.0 on Wikidata and concluded that it outperforms all the existing baselines. Falcon 2.0 is open source and can be reused by the community; all the required instructions of Falcon 2.0 are well-documented at our GitHub repository (https://github.com/SDM-TIB/falcon2.0). We also demonstrate an online API, which can be run without any technical expertise. Falcon 2.0 and its background knowledge bases are available as resources at https://labs.tib.eu/falcon/falcon2/

    Responsible Knowledge Management in Energy Data Ecosystems

    Get PDF
    This paper analyzes the challenges and requirements of establishing energy data ecosystems (EDEs) as data-driven infrastructures that overcome the limitations of currently fragmented energy applications. It proposes a new data-and knowledge-driven approach for management and process-ing. This approach aims to extend the analytics services portfolio of various energy stakeholders and achieve two-way flows of electricity and information for optimized generation, distribution, and electricity consumption. The approach is based on semantic technologies to create knowledge-based systems that will aid machines in integrating and processing resources contextually and intelligently. Thus, a paradigm shift in the energy data value chain is proposed towards transparency and the responsible management of data and knowledge exchanged by the various stakeholders of an energy data space. The approach can contribute to innovative energy management and the adoption of new business models in future energy data spaces. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Responsible Knowledge Management in Energy Data Ecosystems

    Get PDF
    This paper analyzes the challenges and requirements of establishing energy data ecosystems (EDEs) as data-driven infrastructures that overcome the limitations of currently fragmented energy applications. It proposes a new data- and knowledge-driven approach for management and processing. This approach aims to extend the analytics services portfolio of various energy stakeholders and achieve two-way flows of electricity and information for optimized generation, distribution, and electricity consumption. The approach is based on semantic technologies to create knowledge-based systems that will aid machines in integrating and processing resources contextually and intelligently. Thus, a paradigm shift in the energy data value chain is proposed towards transparency and the responsible management of data and knowledge exchanged by the various stakeholders of an energy data space. The approach can contribute to innovative energy management and the adoption of new business models in future energy data spaces

    Empowering machine learning models with contextual knowledge for enhancing the detection of eating disorders in social media posts

    Get PDF
    Social networks have become information dissemination channels, where announcements are posted frequently; they also serve as frameworks for debates in various areas (e.g., scientific, political, and social). In particular, in the health area, social networks represent a channel to communicate and disseminate novel treatments' success; they also allow ordinary people to express their concerns about a disease or disorder. The Artificial Intelligence (AI) community has developed analytical methods to uncover and predict patterns from posts that enable it to explain news about a particular topic, e.g., mental disorders expressed as eating disorders or depression. Albeit potentially rich while expressing an idea or concern, posts are presented as short texts, preventing, thus, AI models from accurately encoding these posts' contextual knowledge. We propose a hybrid approach where knowledge encoded in community-maintained knowledge graphs (e.g., Wikidata) is combined with deep learning to categorize social media posts using existing classification models. The proposed approach resorts to state-of-the-art named entity recognizers and linkers (e.g., Falcon 2.0) to extract entities in short posts and link them to concepts in knowledge graphs. Then, knowledge graph embeddings (KGEs) are utilized to compute latent representations of the extracted entities, which result in vector representations of the posts that encode these entities' contextual knowledge extracted from the knowledge graphs. These KGEs are combined with contextualized word embeddings (e.g., BERT) to generate a context-based representation of the posts that empower prediction models. We apply our proposed approach in the health domain to detect whether a publication is related to an eating disorder (e.g., anorexia or bulimia) and uncover concepts within the discourse that could help healthcare providers diagnose this type of mental disorder. We evaluate our approach on a dataset of 2,000 tweets about eating disorders. Our experimental results suggest that combining contextual knowledge encoded in word embeddings with the one built from knowledge graphs increases the reliability of the predictive models. The ambition is that the proposed method can support health domain experts in discovering patterns that may forecast a mental disorder, enhancing early detection and more precise diagnosis towards personalized medicine

    Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019

    Get PDF
    One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution

    Capturing Knowledge in Semantically-typed Relational Patterns to Enhance Relation Linking

    No full text
    Transforming natural language questions into formal queries is an integral task in Question Answering (QA) systems. QA systems built on knowledge graphs like DBpedia, require a step after natural language processing for linking words, specifically including named entities and relations, to their corresponding entities in a knowledge graph. To achieve this task, several approaches rely on background knowledge bases containing semantically-typed relations, e.g., PATTY, for an extra disambiguation step. Two major factors may affect the performance of relation linking approaches whenever background knowledge bases are accessed: a) limited availability of such semantic knowledge sources, and b) lack of a systematic approach on how to maximize the benefits of the collected knowledge. We tackle this problem and devise SIBKB, a semantic-based index able to capture knowledge encoded on background knowledge bases like PATTY. SIBKB represents a background knowledge base as a bi-partite and a dynamic index over the relation patterns included in the knowledge base. Moreover, we develop a relation linking component able to exploit SIBKB features. The benefits of SIBKB are empirically studied on existing QA benchmarks and observed results suggest that SIBKB is able to enhance the accuracy of relation linking by up to three times
    corecore